D7.7: Dissemination Report I
WP7 – Exploitation and Communication

Authors: Lefteris MAMAIS (EVF), Dimitri PAPADAKIS (EVF), Nefeli POLITI-STERGIOU (EVF)

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 687412.
Disclaimer

Any dissemination of results reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

Copyright message

© APOLLO Consortium, 2016
This deliverable contains original unpublished work except where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has been made through appropriate citation, quotation or both. Reproduction is authorised provided the source is acknowledged.
D7.5: Report on Market Analysis and Competitive Landscape

Document Information

<table>
<thead>
<tr>
<th>Grant Agreement Number</th>
<th>687412</th>
<th>Acronym</th>
<th>APOLLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title</td>
<td>Advisory platform for small farms based on earth observation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizon 2020 Call</td>
<td>EO-1-2015: Bringing EO applications to the market</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of Action</td>
<td>Research and innovation Action</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Date</td>
<td>1st March 2016</td>
<td>Duration</td>
<td>34 months</td>
</tr>
<tr>
<td>Project URL</td>
<td>www.apollo-h2020.eu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document URL</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU Project Officer</td>
<td>Iulia Simion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Coordinator</td>
<td>Polimachi Simeonidou</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deliverable</td>
<td>D7.7: Dissemination Report I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Package</td>
<td>WP7 – Exploitation and Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of Delivery</td>
<td>Contractual</td>
<td>M5</td>
<td>Actual</td>
</tr>
<tr>
<td>Nature</td>
<td>R – Report</td>
<td>Dissemination Level</td>
<td>PU - Public</td>
</tr>
<tr>
<td>Lead Beneficiary</td>
<td>DRAXIS Environmental SA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Author</td>
<td>Nefeli Politi-Stergiou (EVF)</td>
<td>Email</td>
<td>nefeli@evenflowconsulting.eu</td>
</tr>
<tr>
<td></td>
<td>Evenflow SPRL</td>
<td>Phone</td>
<td>+32 494 44 81 07</td>
</tr>
<tr>
<td>Other authors</td>
<td>Dimitri Papadakis (EVF) and Eleftherios Mamais (EVF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributions from</td>
<td>All partners</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reviewer(s)</td>
<td>Polimachi Simeonidou (DRAXIS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keywords</td>
<td>Dissemination Report</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Document History

<table>
<thead>
<tr>
<th>Version</th>
<th>Issue Date</th>
<th>Stage</th>
<th>Changes</th>
<th>Contributor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>10/11/2016</td>
<td>Draft</td>
<td>First draft</td>
<td>EVF</td>
</tr>
<tr>
<td>0.2</td>
<td>14/11/2016</td>
<td>Final</td>
<td>Final draft</td>
<td>EVF</td>
</tr>
</tbody>
</table>
Table of Contents

Executive summary .. 6
1 Communication activities and tools ... 7
 1.1 Visual identity .. 7
 1.1.1 Logo ... 7
 1.1.2 Colour pallet ... 8
 1.1.3 Templates .. 8
 1.2 Website .. 11
 1.2.1 Website statistics .. 17
 1.3 Newsletter .. 20
 1.4 APOLLO on Social Media ... 22
 1.4.1 Twitter ... 22
 1.4.2 Facebook ... 22
 1.4.1 LinkedIn .. 23
2 Dissemination activities .. 24
 2.1 Conferences ... 24
 2.2 Publications .. 28
 2.3 Media ... 28
 2.3.1 Serbia ... 28
 2.3.2 Greece ... 29
3 Conclusions .. 29
4 References .. 30
5 Annexes .. 31

Annex I: APOLLO Dissemination Report ... 31
Annex II: APOLLO’s 1st Newsletter .. 32

Table of Figures

Figure 1: APOLLO logo ... 7
Figure 2: APOLLO Colour Pallet .. 8
Figure 2: Deliverable document template ... 9
Figure 3: Non-deliverable document template ... 9
Figure 4: Deliverable document review template ... 10
Figure 5: Event report template .. 10
Figure 6: Press release template ... 11
Figure 7: Presentation template ... 11
Figure 8: APOLLO’s web home page .. 12
Figure 9: News and tweets section ... 12
Figure 10: APOLLO project section preview ... 13
Table of Tables

Table 1: Statistical indicators (launch-M06).. 18
Table 2: Conferences and workshops at which APOLLO was represented (M0-M06).............. 28
Executive summary

The main objective of this deliverable is to provide a comprehensive overview of the dissemination, communication and marketing tools and activities developed during M0 – M06 of the APOLLO project. The overall objective of the dissemination and communication activities is to promote the results and benefits of the project to a range of relevant target audiences, in order to foster a sustainable customer base for the future commercial service.

The dissemination and communication material and activities that have been produced or undertaken during this period include:

- the visual identity of the project, established at the beginning of the project, aiming to set the baseline for a brand identity for the commercial service;
- a public website launched at M05 and regularly updated, to serve as a single source of information concerning the project results and activities, and to disseminate news;
- the APOLLO page on Facebook, the LinkedIn group and the APOLLO Twitter account, which provide platforms for communicating news and material related to APOLLO to specific audiences (e.g. younger, technologically-aware farmers on Facebook), and for sharing the latest information on the APOLLO services;
- the first of the project’s trimonthly newsletters, providing information, results and events related to the project;
- specific dissemination tools used and distributed at external conferences (i.e. audience-focused presentations);
- representation in conferences and media as well as the publication of scientific papers, enhancing APOLLO’s visibility and enabling the development of a solid network amongst agricultural and Earth Observation (EO) academic and industrial stakeholders at both European and regional level.

The aim of the networking activities is the exchange of information and the fostering of closer scientific and technological cooperation between the project partners and other academic, industrial and governmental partners in the field of Agriculture and Earth Observation services/applications, focused primarily on Europe. Strong networks of stakeholders in both fields is a necessary and important step in the harmonisation of activities and efforts to maximise regional stakeholder’s awareness of APOLLO’s services.

This document provides short descriptions of the dissemination and communication activities reported from APOLLO partners, and carried out directly by the WP7 team. These include participation in conferences, networking events, media, publications etc. The positive impacts of these activities are already being felt, as exemplified by the requests from media representatives for more information about the project (see Section 2.3).
1 Communication activities and tools

1.1 Visual identity

As defined in D7.1: Dissemination, communication and marketing plan, an integrated and coherent visual identity underpins all communication products and tools and forms the basis for a commercial brand. The visual identity consists of the logo, colour pallete, and additional visual elements (e.g. the green header bar) which work together to form a coherent and easily-recognisable whole.

By creating a comprehensive and clean logo, and investing in high-quality design, the WP7 team aims to maximise and prolong the attention and interest of target audiences, and convey the impression of a professional and operational undertaking, as opposed to a research project or a concept under development. In order to become widely recognisable as a brand with as much recognition and awareness as possible throughout the three years of the project, the visual identity has been designed to enable continuity between the project phase and the subsequent commercial phase. In other words, even if the name “APOLLO” is changed to better reflect the content of the services, the similarity of the graphic identity will ensure that brand recognition is retained.

As required by Horizon 2020 rules on dissemination (European Commission, 2012), across all the outputs of the APOLLO project, and accompanying the logo, text concerning the source of the project’s funding and disclosing the Grant Agreement number is provided, along with the European flag.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 687412.

1.1.1 Logo

A comprehensive review of future competitors’ logos (e.g. Pixagri, eLeaf) and those of other projects was undertaken. Some 50 logos were evaluated as part of this process. A design brief was developed in close coordination with the project coordinator. An iterative design and refinement process led to the creation of three options, of which the final version was selected by vote at the project’s Kick-Off Meeting (KOM). The final version is presented in Error! Reference source not found. below.

The logo is comprised of two components, the icon and the text. The symbolism of the icon is based on two components, the pixelated roots and the leaves growing from them. The roots symbolise the data on which the services are based, and imply that the plants’ development is “fed” by information. The plant itself represents healthy crops. Based on the clean and crisp look of the selected logo, the decision was taken not to include any subtext as part of the logo itself.

The text “APOLLO” is not entangled with any other visual element of the logo. This means that if the name is changed in the future to better reflect the commercial aim of the undertaking, the same graphic identity can be adopted without compromising any brand recognition achieved throughout the project.
1.1.2 Colour pallet

The colours used in the visual identity were selected based on the association of shades of green with living and healthy plants. The grey shade used for the font contrasts comfortably with the icon, and subtly suggests a sleek and modern aesthetic. The APOLLO colour pallet contains the following colours:

- RGB: 133,165,32
 HEX: #85a520
- RGB: 147,192,31
 HEX: #93c01f
- RGB: 117,117,117
 HEX: #757575

Figure 2: APOLLO Colour Pallet

In order to be easily identified, all dissemination and communication material is designed using the colour pallet shown in Figure 2.

1.1.3 Templates

Based on the visual identity established by the logo and the colour pallet, templates were produced for text documents (Microsoft Word) and presentations (Microsoft PowerPoint). Templates were produced for the following types of documents:

- Deliverable documents;
- Non-Deliverable Documents, such as memos, notes or letters;
- Deliverable document reviews;
- Event reports;
- Press releases;
- Presentations.

Samples of each template are supplied in the figures below.
D7.5: Report on Market Analysis and Competitive Landscape

Figure 3: Deliverable document template

Figure 4: Non-deliverable document template
This project is co-funded by the European Union

D7.5: Report on Market Analysis and Competitive Landscape

Figure 5: Deliverable document review template

Figure 6: Event report template
1.2 Website

The APOLLO website (www.apollo-h2020.eu) serves as the online marketing tool of the project. It provides key information about the project and the future commercial services. APOLLO’s website provides access to the following key information in a concise and appealing manner:
• Description of project objectives, partners and funding;
• Public deliverable documents, results and latest news;
• Announcements on project activities and involvement opportunities;
• Promotional materials.

The APOLLO website was first released for comment on 28 August 2016, and formally made public in September 2016 (M05). In its first version, the website is focused on communicating the project-related aspects of APOLLO, whilst the second release (M12) will focus on promoting the commercial services. The structure of the project-focused website is as follows; each section heading is accompanied by a brief description of the content to be included therein:

Figure 9: APOLLO’s web home page

1. **HOME**: A short synthetic description of the project, sections for tweets and news, direct links to the SERVICES page, and a link to subscribe to newsletter.

Figure 10: News and tweets section

2. **PROJECT**: A summary of the APOLLO project, with reference to the call, and the project’s duration, budget and partners. The page includes:
A list of the work packages and a short description of each, mapped against the partners, and linked to relevant other sections.

A simple graphical timeline of the main project deployment milestones

A list of partners with descriptions and links back to the relevant WPs;

A list of the public deliverables along with a short description and download links of available deliverables.

3. CONCEPT: A discussion of the project’s background, a statement of the problems or challenges it addresses, an overview of the target markets and technologies used in the project, and a short overview of the project’s main impacts.
4. **SERVICES**: An introduction to the service platform and its mobile application and desktop interfaces, along with a description of each of the four services, the problem each service solves, and the benefits conferred.

Figure 13: Services section preview

TILLAGE SCHEDULING

Tillage is the practice of preparing the soil for planting, usually performed on farms using special tillage implements. The amount of water in the soil is a key factor for crop resilience and for effective tillage.

There is a lower limit to the moisture content (also known as the lower plastic limit), below which clay-pan soils can become very hard and difficult to till. On the other hand, there is a negative correlation between the moisture content and the workability of clay-pan soils.

The APOLLO Tillage Scheduling service can provide information on when soil tillage should be performed, according to the soil's moisture content. The farmer can then determine if it is possible to apply soil tillage and to identify spots where the soil cannot be tilled at the optimal level (e.g., muddy spots).

Figure 14: Tillage Scheduling service section preview
D7.5: Report on Market Analysis and Competitive Landscape

IRRIGATION SCHEDULING

Irrigation is hailed as one of the most efficient technologies in reducing water demand in agriculture. The APOLL0 Irrigation Scheduling module has been integrated into the Spatial Decision Support System (SDSS) to help farmers schedule irrigation intervals and optimize water usage. The module uses advanced algorithms to determine the optimal amount of water needed for each crop, taking into account factors such as temperature, humidity, and soil moisture. This ensures that crops receive the right amount of water at the right time, reducing waste and improving crop yield.

Figure 15: Irrigation Scheduling service section preview

CROP GROWTH MONITORING

The APOLL0 Crop Growth Monitoring service provides real-time information about crop health and growth. It uses a combination of satellite imagery, weather data, and soil moisture sensors to monitor the health of crops and detect any issues early. This allows farmers to take corrective actions before the problems become severe. The service is particularly useful for monitoring crops in remote or challenging environments where traditional monitoring methods may not be feasible.

Figure 16: Crop Growth Monitoring service section preview

CROP YIELD ESTIMATION

Crop yield estimation is crucial for optimizing crop production and ensuring food security. The APOLL0 Crop Yield Estimation service uses aerial and satellite imagery to estimate crop yields. It takes into account factors such as soil type, weather conditions, and crop variety to provide accurate estimates of crop yields. This information is invaluable for planning and decision-making, helping farmers to optimize their resources and increase their profits.

Figure 17: Crop Yield Estimation service section preview
5. **PILOTS:** A description of each pilot (Serbia, Spain and Greece) and the partners involved, a short summary of its progress and the main results to date.

![Pilot section preview](image)

Figure 18: Pilot section preview

6. **NEWS & MEDIA:** A list of recent news items, links to the download sections for the newsletter (current and archive copies of web newsletter), press releases.

7. **GET INVOLVED:** A section dedicated to engaging with audiences, containing a contact form, newsletter subscription form, a link to the user requirements survey, and a section discussing how to become a trial user.
The site was produced on the basis of the WordPress platform using available templates, and modified where necessary to accommodate the required features.

1.2.1 Website statistics

APOLLO’s website was put online on the 29th of August 2016, and officially launched in September (M05). Data on website traffic over this period have been monitored using Google Analytics. The major statistic indicators are the following:
• **Sessions**: Session is defined as a group of interactions taken by one user within a given time frame (30 minutes) on the website. The number of sessions is an indicator of how many times the site has been visited.

• **Users**: Visitors that have had at least one session within the selected date range (includes both new and returning visitors).

• **Page views**: The total number of times a page has been viewed. Repeated views of a single page are counted.

• **Pages/Session**: Average number of pages viewed during a session. Repeated views of a single page are counted.

• **Average Session Duration**: Average time spent by visitors browsing the site.

• **Bounce Rate**: The percentage of single-page visits (i.e. visits in which the visitor enters and leaves the site from the same page, without interacting with the rest of the site).

• **Percentage of New Sessions**: Estimate of the percentage of first-time visitors.

In order to remove the influence of automated web “crawlers” on the data, only sessions longer than 30 seconds have been included in the analysis. The values of the above indicators are recorded in the following table, Table 1.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions</td>
<td>332</td>
</tr>
<tr>
<td>Users</td>
<td>136</td>
</tr>
<tr>
<td>Page views</td>
<td>577</td>
</tr>
<tr>
<td>Pages/Session</td>
<td>4.04</td>
</tr>
<tr>
<td>Average Session Duration</td>
<td>00:06:24</td>
</tr>
<tr>
<td></td>
<td>(h:m:s)</td>
</tr>
<tr>
<td>Bounce Rate</td>
<td>28.61%</td>
</tr>
<tr>
<td>New Sessions</td>
<td>41.87%</td>
</tr>
</tbody>
</table>

Table 1: Statistical indicators (launch-M06).

Information on the visitors’ behaviour and areas for improvement can be extracted from the statistical data provided by Google Analytics.

Sessions

Since launching, the APOLLO website has received 332 visits (sessions) from 136 different users. As can be seen in Figure 20, immediately following the official launch of the website, APOLLO received a large number of visitors. After this first peak, visits stabilised, with a few noticeable peaks occurring as a consequence of various other activities.
This project is co-funded by the European Union

D7.5: Report on Market Analysis and Competitive Landscape

As evident in Figure 21, 41.9% of total visitors to the website were new. At this point, the number of returning visitors is assumed to reflect mainly the project partners. It can be assumed that new visitors are mainly stakeholders interested in learning more about the APOLLO project, coming from the growing network of contacts established via activities such as conferences, media appearances and publications.

Figure 20: Visitor sessions for the APOLLO website (launch-M06).

Geolocation statistics

As can be seen in Figure 22, the majority of visits came from three countries: Greece (31.33% of the total sessions), Belgium (27.14% of the total sessions) and Serbia (23.19% of the total sessions), reflecting the home countries of project partners. Spanish visitors represented 4.22% of total sessions. Given the short time period since the launch of the site, a noticeable number of visits came from other European countries; Germany and France accounted for 1.20% each of the total number of sessions. In addition, there are some noteworthy visits from countries outside Europe, such as Sri Lanka (0.9%). Other international visits not shown on the graph below include the United States and India (less than 1%). Considering the recent launch of the site, these results are within the margins of expectation.

Figure 21: New and returning visitors (launch-M06).
These statistics are expected to increase through the duration of the project as the APOLO intensifies its dissemination and communication activities and builds solid networking channels.

1.3 Newsletter

The APOLO project publishes a regular trimonthly newsletter to inform subscribers of upcoming events, project milestones, and relevant news stories linked to the broader fields of precision agriculture and smart farming. The main purpose of the newsletter is to announce project-related events, communicate project news, and maintain the interest and awareness of subscribers as the project progresses.

The newsletter was designed, and is distributed, using the online service MailChimp. A list of subscribers was generated by emailing a selection of contacts using the APOLO communication database (Section 4.1), inviting subscriptions to the newsletter. This strategy was chosen to avoid sending unsolicited mail to contacts, and in the interest of retaining high-quality contacts who have opted into receiving the newsletter.

In addition, project partners were asked to distribute the newsletter amongst their contacts and publicise its availability on their own channels. The first APOLO Newsletter was released in October 2016 and a preview of the editorial is presented in Figure 23. The complete first newsletter can be found in Annex II.
Agricultural advisory services for European farmers

Welcome to the first newsletter of the APOLLO project, an EU-funded initiative aiming to build affordable, accessible and easy-to-use agricultural advisory services for European farmers - especially smallholders.

The field of precision agriculture is making great strides thanks to the increasing availability (and ever-decreasing price) of a wide variety of technologies, such as drones, sensors and cloud data processing, as well as vast quantities of free and open data provided by the Copernicus programme.

APOLLO harnesses the power of satellite imagery and state-of-the-art crop models to make the benefits of precision agriculture accessible to farmers who might not otherwise be able to take advantage of them. Our consortium is working hard to creating an affordable, tailored product to meet the needs of the many small farmers in Europe who have yet to benefit from the latest technological developments in precision agriculture, which are often expensive, and only make economic sense for farmers with large holdings.

We are looking forward to an exciting project with real commercial potential, and we welcome your comments and feedback as we move forward.

- The APOLLO Communications Team

Figure 23: APOLLO’s 1st Newsletter editorial
1.4 APOLLO on Social Media

Both Facebook and Twitter were designed to augment and complement the website as the central channel of stakeholders and potential customer engagement. In addition, a LinkedIn group has been created in order to stimulate debate and discussion around the APOLLO services.

1.4.1 Twitter

Twitter is a micro-publishing platform with some 330 million users, widely used for both B2B and B2C communications. Twitter can support the development of communities of interest. This is achieved through both “following” relevant accounts and being “followed”, and by the publication of short posts on the latest project developments and news, and links to relevant content. These posts are accompanied by relevant hashtags around which conversations can develop. APOLLO has established a Twitter presence under the username @APOLLO_Agri for amplifying the propagation of news, announcements and publications.

At the end of M06, the APOLLO Twitter account was following 101 other accounts related to the Agricultural sector (i.e. projects, private companies, agricultural professionals, EU agricultural institutions and decision makers) and was being followed by 23 other accounts.

1.4.2 Facebook

Facebook is a large and well-known social network with over 1.5 billion users, which, although designed for personal use by individuals, has become an important platform for B2C communications. APOLLO has established a Facebook page for the purpose of reaching out to groups and networks (such as Agri.EU - The Social Network of European Farmers) and for engaging in public conversations with a younger generation of technologically-aware farmers.
1.4.1 LinkedIn

A LinkedIn group entitled “APOLLO H2020 Project” has been formed in order to enable a platform for discussion with professionals on the network.

Figure 25: APOLLO’s Facebook page

Figure 26: APOLLO LinkedIn Group
2 Dissemination activities

Representatives from all APOLLO project partners have promoted the project using the means and channels at their disposal.

2.1 Conferences

A strategic campaign of event and conference attendance was planned for the lifetime of the APOLLO project and is registered in “D7.1 Dissemination Communication and Marketing Plan”. The aim is to maximise the effect of direct interaction with relevant stakeholders, present the APOLLO solution as part of the programme of speakers and to distribute APOLLO marketing material to attendees. Dedicated presentations were produced by the participating partners to facilitate the promotion of APOLLO in the context of each event. A dedicated Google form was created in order to collect reports from partners on the activities in which they have been involved (See Annex I).

The APOLLO project was represented at the Geospatial World Forum 2016, European Space Solutions 2016, and the NEREUS event “What can Sentinels do for regions?”. Table 1 summarises the events at which APOLLO was represented, totalling nine conferences and workshops.

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
<th>APOLLO’s involvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copernicus Eastern Europe Conference:</td>
<td>The conference is a reference event for the Earth Observation community in Eastern Europe. The 2015 conference demonstrated the progress made by the European Union flagship programme towards providing reliable data benefitting environment and security. More about the event can be found here.</td>
<td>The APOLLO project was presented in order to initiate contacts and to build a network across Europe with the members of the EO community. Presentation title: “An advisory platform for small-scale farmers based on Copernicus data: the APOLLO project”, Dimitrios Papadakis (EVF).</td>
</tr>
<tr>
<td>“Copernicus – big data benefitting environment and society”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bucharest, 1-2 October 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation: EVF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session: Regional Copernicus activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and their potential for cooperation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials: PPT presentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of attendees: ~70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copernicus Value Chain Workshop</td>
<td>The workshop aimed at identifying specific needs and expectations from the widest possible range of stakeholders and communities to foster the full development of the Copernicus Value Chain. It gathered a mix of representatives from the Copernicus ecosystem, actors from the information</td>
<td>Dimitrios Papadakis (EVF) attended this event in order to collect observations relevant to the project and make connections with the stakeholders present.</td>
</tr>
<tr>
<td>Brussels, 26-27 April 2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation: EVF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session: Supporting end-users and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>boosting demand for</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 A preview of the Google form can be found in Annex I.
<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EO enabled services
Materials: none
No. of attendees: ~100</td>
<td>Technology industry and big data domain, as well as existing and potential end-users of Copernicus data and information from a variety of industrial sectors. Two themes were addressed: data dissemination platforms for Copernicus and market uptake of Copernicus, including support to companies in the EO downstream sector. More about the event can be found here.</td>
</tr>
<tr>
<td>Geospatial World Forum – CAPIGI
Rotterdam, 24-26 May 2016
Participation: EVF
Session: CAPIGI and GeoAGRI
Materials: PPT presentation
No. of attendees: ~40 (CAPIGI); ~400 (GWF)</td>
<td>CAPIGI is the network for geo-information experts active in agriculture. The Community on Agricultural Policy Implementation and Geo-Information (CAPIGI) brings together governments, industry and research to discuss the impact of geo-information in implementing agricultural policy. CAPIGI presents a state-of-the-art overview on innovations and research in geo-information sciences. These emerging technologies get illustrated with practice experiences in agricultural policy implementation. More information as well as images from the event can be found here.</td>
</tr>
<tr>
<td>European Space Solutions
Hague, 30 May-03 June 2016
Participation: EVF
Session: Agriculture and Food
Materials: none
No. of attendees: ~350</td>
<td>Under the auspices of the 2016 Dutch Presidency of the Council of the EU, the fourth successful edition of European Space Solutions took place in The Hague from 30 May 3 June 2016 at the World Forum Convention Centre. This major 5-day conference brought together business and the public sector with users and developers of space-based solutions. More information as well as images from the event can be found here.</td>
</tr>
</tbody>
</table>
What can Sentinels do for regions? (Sentinels4Regions)

Brussels, 28 June 2016

Participation: EVF
Session: all
Materials: none
No. of attendees: ~60

The joint NEREUS-ESA initiative on "Improving Copernicus among Local and Regional Authorities" held its final festive event at the European Parliament, under the auspices of Patrizia Toia, Member of European Parliament and Vice-Chair of the ITRE Committee.

More information for the event can be found [here](#).

Dimitrios Papadakis (EVF) attended this event in order to collect observations relevant to the project and make connections with the stakeholders present.

Copernicus Agri Forestry User Requirements Workshop

Brussels, 30 June 2016

Participation: EVF
Session: Agriculture and Food Security
Materials: none
No. of attendees: ~60

This workshop aimed at gathering, examining and consolidating user requirements, and confronting these with major gaps to be potentially addressed by the Next Generation of the Copernicus Space Component (CSC).

The workshop had two sessions, one dedicated to the Agriculture and Food Security domain, and another with focus on Forestry applications.

More information as well as images from the event can be found [here](#).

The audience was composed of users, service providers, representatives from the scientific community, and Space agencies. Dimitrios Papadakis (EVF) attended this event in order to collect observations relevant to the project and make connections with the stakeholders present.

GeoMLA (Geostatistics and Machine Learning) – Applications in Climate and Environmental Sciences

Belgrade, 23 June 2016

Participation: UBFCE
Session: II
Materials: PPT presentation
No. of attendees: ~50

The GeoMLA conference aims at reviewing the recent progress in the application of Machine learning and geostatistics in Climate and Environmental sciences. The conference sessions covered topics including modelling of climate science data, spatio-temporal predictions in 2D, 3D, 2D+T and 3D+T, novel approaches to automated mapping and geoinformatics for Environmental sciences, combining geostatistics and machine learning, change detection and temporal analysis of meteorological and climatic variables.

Dr Dragutin Protic gave a presentation explaining how biophysical parameters derived from Sentinel-2 data enable crop condition monitoring.
Science Communication Event – Manchester	The focus of this event was on highlighting the benefits of science communication and better understanding the interests of different communication multipliers such as for example the European Commission, journalists, and big organisations promoting science to the general public. During the event, invited experts explained their views on science communication and particularly why they believe communication is beneficial for researchers, the do’s and don’ts in communication and how to work together. More information as well as images from the event can be found [here](#).
Manchester, 24 July 2016	The event was designed to allow discussion between H2020 projects on their science communication strategies. On behalf of APOLLO, Dimitrios Papadakis (EVF) attended this event in order to collect observations relevant to the project and make connections with relevant stakeholders present. Initially it was intended that presentation should be given but this was cancelled in the lead-up to the event.
Participation: EVF	
Session: all	
Materials: PPT presentation	
No. of attendees: ~250	

APOLLO Interactive Stakeholder Workshop	Ugljesa Trkulja from the Association of farmers of the Municipality of Ruma and Dragutin Protic and Milan Kilibarda, both from the Faculty of Civil Engineering of the University of Belgrade, led an interactive workshop with approximately sixty farmers, consultants and representatives of agricultural cooperatives from the Municipality of Ruma and its surrounding area. The aim was to present the ideas of the APOLLO project to farmers, consultants and cooperatives of the Municipality of Ruma, to raise their awareness regarding the use of satellite data in agriculture and to prompt their interest in actively participating in the creation of APOLLO services.
Ruma, 29 July 2016	APOLLO-organised stakeholder consultant and awareness-raising event.
Participation: UPOR, UBFCE	
Session: All	
Materials: PPT	
No. of attendees: ~60	

| **INSPIRE Conference 2016- “INSPIRing a sustainable environment”** | The INSPIRE Conference 2016 aimed to demonstrate how the implementation of INSPIRE contributes to the European Interoperability Framework and the EU's digital economy in |
| **Barcelona, 26-30** | Dimitrios Papadakis (EVF) attended this event in order to collect observations relevant to the project and make connections with the |
2.2 Publications

Publishing articles in qualified publications guarantees the effective dissemination of specific project results, targeting groups of experts in the sectors addressed by APOLLO. For this reason, a set of conferences and scientific journals were identified. In the scientific domain publishing results in peer-reviewed journals, and in peer-reviewed conferences is the dominant mechanism for knowledge transfer. During the first six months of the project, one conference paper was published and presented by its lead author Dr. Dragutin Protic at the GeoMLA conference in Belgrade in May 2016:

The number of publications and conference papers is expected to increase as the project’s technological development advances.

2.3 Media

Since the start of the project on the 1st of March 2016, representatives of the consortium have promoted the project in the media, through regional TV interviews and articles in national news.

2.3.1 Serbia

- Article in Serbian regional journal, published on the 18th June 2016: “Прецизна пољопривреда- Аполо пројекат”
This project is co-funded by the European Union.

D7.5: Report on Market Analysis and Competitive Landscape

This article presents the aims, objectives and consortium of the APOLLO project. It also gives access to a brief video report of a meeting organised by the project with local farmers’ associations.

- Article and video on Serbian regional channel: STV SREMSKA TELEVIZIJA, 29 June 2016
 - “Satelitsko praćenje poljoprivrednih useva u Rumi”
 (EN: “Satellites monitoring agricultural crops in Ruma”)
 - TV coverage and interview
 Presentation of the APOLLO project and services to representatives of the agricultural community in Serbia and interview with Dr. Dragutin Protic.

2.3.2 Greece

- Article on Agrenda.gr, published on the 23rd September 2016:
 “APOLLO: Η ΕΦΑΡΜΟΓΗ ΠΟΥ ΕΠΙΤΡΕΠΕΙ ΣΤΟΥΣ ΑΓΡΟΤΕΣ ΝΑ... ΚΑΛΛΙΕΡΓΟΥΝ ΑΠΟ ΜΑΚΡΙΑ”
 (EN: APOLLO: an application that enables farmers to cultivate remotely)

This article presents the aim, the objectives and the services of the APOLLO project.

3 Conclusions

This Dissemination Report has provided an overview of the dissemination, communication and marketing activities implemented in the scope of the APOLLO project, in accordance with the provisions of the Dissemination Plan “D7.1: Dissemination, communication and marketing plan” issued during the first months of the project (M03).

The effectiveness of these activities has been ensured by defining appropriate target groups, allowing the most relevant audiences to be reached with the most appropriate dissemination and communication tools and activities. The main aim is to keep the interested parties engaged with the project and its results, with the ultimate intention of converting them into customers.

Participation in various events such as workshops, conferences and networking events is an important activity for gathering opinions and creating partnerships. As a result of the various events at which APOLLO has been represented, a solid basis for future cooperation has begun to form. Partners have successfully embarked on building networks of contacts who are interested in the APOLLO services. Involvement in the outreach activities mentioned above has allowed the enrichment of the market knowledge of the APOLLO team and has provided meaningful insights into the key competitors and their practices.

Along with the target groups identified, a wider audience has been reached through the participation of APOLLO representatives in international conferences, as well as the publication of papers in specialised publications.
4 References

5 Annexes

Annex I: APOLLO Dissemination Report

APOLLO Dissemination Report

Mar-Oct 2016
This form is for reporting APOLLO dissemination activities during the above time period. Please note that events should be reported using the Event Report template available in the APOLLO Repository.

* Ανατρεπτικά

Διεύθυνση ηλεκτρονικού τοκοδρομίου *
Η διεύθυνση του ηλεκτρονικού τοκου...

Partner *
Επωνυμία

Activity type *
Επωνυμία

Date(s) and place of activity (if applicable)
Η αρνητική σας...

Description of activity
Η αρνητική σας...

Audience (size/demographics)
Η αρνητική σας...

Key stakeholders
Η αρνητική σας...

Feedback / Impact
Η αρνητική σας...

Promotional material used
Η αρνητική σας...

Material produced (e.g. photos, videos, presentations etc.)
Η αρνητική σας...

Μη υπολογίζονται οι συνθήκες προϊόντας με βάση τα Πρόγραμα Άλλα
Agricultural advisory services for European farmers

Welcome to the first newsletter of the APOLLO project, an EU-funded initiative aiming to build affordable, accessible and easy-to-use agricultural advisory services for European farmers - especially smallholders.

The field of precision agriculture is making great strides thanks to the increasing availability (and ever-decreasing price) of a wide variety of technologies, such as drones, sensors and cloud data processing, as well as vast quantities of free and open
APOLLO harnesses the power of satellite imagery and state-of-the-art crop models to make the benefits of precision agriculture accessible to farmers who might not otherwise be able to take advantage of them. Our consortium is working hard to creating an affordable, tailored product to meet the needs of the many small farmers in Europe who have yet to benefit from the latest technological developments in precision agriculture, which are often expensive, and only make economic sense for farmers with large holdings.

We are looking forward to an exciting project with real commercial potential, and we welcome your comments and feedback as we move forward.

- The APOLLO Communications Team

APOLLO News

![A successful project launch](image)

The APOLLO project was successfully launched at its inaugural meeting, held in Thessaloniki on the 12th and 13th of May 2016. [Read the press release!](#)
Farmers in the driver’s seat

APOLLO reaches out to farmers in the three pilot countries of Serbia, Greece and Spain to gather views on what the future services should do.

Read more about APOLLO’s user consultation

Validating the demand of APOLLO services

The APOLLO project was represented at two major conferences this summer where the increasing potential of new applications in the precision agriculture field was repeatedly emphasised.

Read more

Sentinel-2 data enables crop monitoring

Dr Dragutin Protic explains how biophysical parameters derived from Sentinel-2 data enable crop condition monitoring, at the Geostatistics and Machine Learning conference.

Watch the video

Meet the APOLLO team

An interview with Machi Simeonidou (DRAXIS), APOLLO Project Coordinator

APOLLO’s coordinator Machi Simeonidou, project manager at DRAXIS Environmental Technologies, gives her perspective on the implementation of the APOLLO project’s vision.

Read the interview with Machi Simeonidou.
Bringing the benefits of precision agriculture to smallholder farmers

APOLLO is an EU project aiming to develop agricultural advisory services aimed primarily (but not exclusively) at smallholder farmers in Europe. Visit the APOLLO project's new web site!

The APOLLO Services

Tillage Scheduling
When to till for best results, avoiding soil degradation and saving energy.

Irrigation Scheduling
When and how much to water your crops, reduce waste and avoid over-irrigating.

Crop Growth Monitoring
Keep an eye on the state and health of crops from emergence to harvest.

Crop Yield Estimation
Analyse field productivity and improve sell/store decision making.
Events on the horizon

NEREUS Regional Workshop: When Space Meets Agriculture
14-15 November 2016, Matera, Italy
Promoting a better understanding of the significance and potential of European space systems in Agriculture.

European Intelligent Agriculture Congress
16-17 February 2017, Brussels, Belgium
The congress will feature, displays and presentations of currently available and near future agri-tech innovation.

News from the field

The Agrinnovation magazine Issue No 3 is out!
Read how research and practice come together in action in EIP-Agri's annual journal.

Precision agriculture could be the solution to feeding 10 billion people
Read why precision agriculture innovations help to meet the world’s food demand and potentially benefit all levels of the farming industry.

Review: Costs and benefits of precision technologies ‘poorly understood’
A survey on the barriers to the adoption and development of precision farming technologies within the cereals and oilseeds sector, published in FarmingUK.

How ICT tools are improving the efficiency of agricultural development
A survey from the Guardian on the added value of new tools used in agriculture.

Adaptation strategies to deal with water scarcity
Read how to improve water management at farm level in EIP-Agri's factsheet.

Launch of new satellites have potential to help farmers take precision agriculture to
next level
An article on how the Copernicus programme has the potential to enable farmers take precision agriculture to a new level, published in FarmingUK.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687412

Disclaimer
The contents of this newsletter reflect the views of the APOLLO consortium. The European Commission is not responsible for any use that may be made of the information it contains.

Copyright © 2016 APOLLO project, All rights reserved.

Want to change how you receive these emails?
You can update your preferences or unsubscribe from this list